大学数学(数学专业)怎么这么难?怎么能学好?

大学数学(数学专业)怎么这么难?怎么能学好?,全文导读本文共收集了《1. 大学数学(数学专业)怎么这么难?怎么能学好?》、《2. 高等数学怎样才能学好?》、《3. 从小学开始,没有学好数学怎么办,基础很差,现在大学还能补回来吗》、《4. 怎样学好大学数学?》、《5. 大学数学太难学了 怎么办啊》、《6. 大学数学很差怎么办?直接跟不上,基础不好》、《7. 上大学想

本文标题:大学数学(数学专业)怎么这么难?怎么能学好?,在当今社会,留学已经成为了大家深造的首选方式。无论是本科生、硕博研究生,甚至是中小学生,都想尽早地接收西方发达国家的留学教育,其中很多同学十分关注“大学数学(数学专业)怎么这么难?怎么能学好?”相关的问题,为此环俄小编整理了《大学数学(数学专业)怎么这么难?怎么能学好?》,欢迎您阅读!若有任何疑问,欢迎您随时联系我们的在线顾问,我们会为您进行专业的1对1答疑!

全文导读

本文共收集了《1. 大学数学(数学专业)怎么这么难?怎么能学好?》、《2. 高等数学怎样才能学好?》、《3. 从小学开始,没有学好数学怎么办,基础很差,现在大学还能补回来吗》、《4. 怎样学好大学数学?》、《5. 大学数学太难学了 怎么办啊》、《6. 大学数学很差怎么办?直接跟不上,基础不好》、《7. 上大学想学金融系的话必须要数学很好吗?我数学太差怎么办?》、《8. 现在上学学的好难,学数学,后悔上大学了怎么办》、《9. 我大学想学心理学,但是听说对数学的要求很高,但是我数学水平比较差,该怎么办?》、《10. 学好大学数学最重要的是学好哪几门课程》、共计10篇观点性文章及对应的评论供您参阅。

观点一、大学数学(数学专业)怎么这么难?怎么能学好?

针对观点一的第1条评论:

我来简单说一下典型北美数学专业的课程分布吧 (参考我所在学校/以及其他大学)

基础的几门就是:
微积分1 (导数之类的)Calculus
微积分2 (积分啊泰勒啊什么的)
微积分3 (多元微积分)Multivariable Calculus
线性代数 Linear Algebra
统计e69da5e6ba90e799bee5baa6e79fa5e9819331333363386230 (不是强制要求 Statistics
计算机科学专业的一节课 CS intro这种

然后再上去就是:
离散数学 Discrete Mathematics
数学分析
抽象代数 Abstract Algebra
然后一些学校会要求一些
Analysis
Senior thesis

选择性学的就有: (以下部分是与国内数学专业朋友交谈后的综合课程
Probability 概率
Differential Equations 微分方程 也就是ODE
Graph Theory 图论
Number Theory 数论
Complex Analysis 复分析
Geometry 几何学
Differential Geometry 微分几何
History of Mathematics 数学史
Topology 拓扑学
Dynamical System 动力系统
Partial Differential Equation(PDE) 偏微分方程
Group Theory 群论
Real Analysis 实分析
Algebraic Geometry 代数几何

至于你说的教材问题
可以选择你喜欢的北美学校的Math Department
选择课程 进入课程主页 一般教授都会po课程要求课本
你可以选择在TB买电子书 打印
上面选择性学习的课程我很多是自学的
就是知道该学那本书后
多读多看做习题
基础课程的话最好综合MATLAB/MATHEMATICA来学

不是数学专业的学生学好数分和高代就够了,曾经有个经济学专业学长大学数学竞赛非数学组复赛满分,全国当时6个满分吧,后保送清华,他说他准备复试就看的数学分析(后面太难他也没看完)。另外数学专业主干课程有:

大一:数分、高代、解析几何(解析几何和高代联系紧密,有兴趣可以看看)。
大二:近世代数(或称抽象代数,研究群环域等代数结构的,很难的一门学科)、概率统计(概率论与数理统计,一学年的课程,比较重要)、复变函数。
大三:常微分方程、随机过程(统计的后继课程之一)、数值分析、运筹学、实变函数与泛函分析(一学年的课程)、拓扑、微分几何、模糊数学。
大四上:傅里叶分析、近代分析、数理方程。

这些就是四年的课程,抛开了涉及计算机c++数据结构数据库之类的课程,不同学校的课可能不一样。
解析几何与高代联系紧密,看懂高代解析几何也较为容易。高代书的最后也会涉及群环域的知识,与近世代数课程部分重叠,近世代数逻辑性很强,满书都是符号。除了数分与高代,概率统计、常微分方程、实变泛函都是较重要的课程。

观点二、高等数学怎样才能学好?

针对观点二的第1条评论:

认真听、课后复习和预习、多跟学习好的人请教高等数学,在大学里面是很多学渣眼中毕业的拦路虎,所以学好高等数学非常的重要,但是如何学好就是其中的关键了,所以建议分成三步走;第一上课认真听,如何什么东西要是上课不认真听,除非是天生有非凡天赋,可以课后自己一看就懂,不然就老zhidao老实实上课做好笔记工作,并且认真听,听不懂也要听,毕竟这个也会让你的脑子留下印象。第二要课后复习和预习,高等数学其实和以前的数学的学习方法回都是类似,需要不停的巩固运算,不然会非常容易忘记里面的知识,所以课后的复习和预习工作真的必不可少,不然每次讲完就讲完,知识都会还给老师,那怎么能将高等数学学会呢?第三,要跟学习好的人请教,因为大学已经不想高中一样了,不懂的可以随时问老师,上了大学很多同学可能连老师的名字都不认得,并且不是每个老师都有固定的办公位置,很多老师上完课之后,你就找不到他在哪里了,所以有一个成绩好的人帮答忙,就像有个小老师在教你一样。高等数学说难也不难,其实什么东西只要认真学都是学得会的,说学不会的都是害怕辛苦,脑子里自动下指令说不而已,只要克服困难,一切都是非常的简单。

针对观点二的第2条评论:

虽然高中数学差,但是我觉得只要有百恒心还是能够学好的,有时候我们觉得很度难的事情,只要努力认真做了最后肯定会有回报知,比如学高等数学可以先提前做道功课预习,把自己不会的不懂得知识点单独列出来,可回以多去请教别人,或者自己找一些资料辅助学习,只要功夫下到,再难的问题也能攻答破。

针对观点二的第3条评论:

对那百些高等数学想要学好的话,首先要有这个耐心,毕竟高等数学他需要很多的这个知识点才有可能学得了,那么就需度要好好的去版了解好好的去复习,另外也要懂得问那些懂的人,比如说学长啊,让他们教一下,你这样的话权就能够更快的学好吧。

针对观点二的第4条评论:

不要去想高中学的怎么样,到了大学开始重新开始就可以。只要抄上课认真听讲,老师布置的作业做完,搞清楚所有知识点,定期复习,高袭等数学其实很好学,而且学进去之后还会发现很有趣。所以不要听别人一说高等数学难,心理上就有了一定的抵触zhidao和害怕,自己放平心态好好学就没有什么问题。

针对观点二的第5条评论:

上课认真听zhidao课,下课认真复习预习。复习这一点特别重要,一定要每天看。不要觉得上课认真听课,下课就没什么事了,每天都要回温故而知新。大学知识和高中不一样,隔一天不看就会忘光。如果你答听了一周课没看书,周日回忆一下可能什么都不记得。一定要听课+复习+预习+做题。

观点三、从小学开始,没有学好数学怎么办,基础很差,现在大学还能补回来吗

针对观点三的第1条评论:

从高中开始学就可以,高中有很多都是对初中的复习,只要坚持就能补回来,最好下载点高数的网课,这样学习效率比自己闷头看书效率更好

观点四、怎样学好大学数学?

针对观点四的第1条评论:

怎样学好大学数学步骤如下:
第一,大学的数学非常注重逻辑,课前的预习有助于学好大学数学,一可以发现不懂的,二可以再正式课程上加深印象

第二,重点掌握关键公式,大学数学不会考得太深,基本是学会了相关的内容,考试就考这么些内容,所以公式必定要烂熟于心
第三,练习是很重要的,大学数学虽然考得不深,但是学生常有,上课听老师说,明白。但是课后自己做题,却发现不会。这就是没有熟练的典型特征
第四,考试复习的时候,一定要听老师在考试前一节课给你们讲的题,或者老师划的重点。大学的考试,老师说什么,考试几乎就考什么的。
第五,平时分混好一点,作业每次都要交,课每次都去上,课后多问问题,老师对你有印象,平时分就高。
第六,自信自己学e799bee5baa6e997aee7ad94e78988e69d8331333337626137到的知识点是掌握好的,很多学生就是焦虑才考差,大学考试,题目的答案经常是很怪的,不要质疑,重算一次答案还是怪,就让它怪吧,往往答案就是怪的。

大学数学包含大学本科物理、计算机、电子等系列“大学数学”课程的教材。它符合国家教委1989年审订的综合大学本科物理类专业“高等数学课程教学基本要求”和教育部1998年制定的“全国硕士研究生入学统一考试数学考试大纲”的要求。本书分上、下册。上册包含一元微积分、线性代数初步、究竟解析几何、多元函数微分学和重积分;下册包含线面积分、级数与广义积分学、线性代数和微分方程。

针对观点四的第2条评论:

每天认真听讲,然后复习,遇到不懂的就问老师,其他的就是多看经济方面的书!

针对观点四的第3条评论:

首先,老师讲课一定要认真听,作业认真完成,这是学好数学的必要条件,它的重要性已不必多说。另外,学校有时会为学生统一订购一些教学辅导书籍,可充分利用。有些超常学生可以加强学习的深度、广度、但基本功--基础知识万万不可忽视。

其次,要注意效率。不作"重复劳动",每次预复习都要有比较明确的目的。在此,我想提出一点:过多的参考书是毫无必要的。看透一本参考书往往优于"看两本书,却均未看透"的情形。著名数学家华罗庚说过:"读一本书,要越读越薄。"这就是说,要抓住统帅全书的基本线索,抓住贯穿全书的精神实质。

这不禁使我想到,我们现在每一个学生在汲取知识的同时,都在为自己编织一张知识网络,其主要作用是串连所学知识,提高学习效率。知识网络应当编织得疏密得当。太疏了,不能使自己的思维四通八达,纵横恣肆;太密了,会影响主线的清晰度,得不偿失。在此不妨举一例:有一位同学,平时学习极其用功,做的数学题极多,但不去理解主旨,几乎把每本参考书中的每句话都当成重点,以求"滴水不漏"。更可悲的是,在重复劳动之中,他从来不将自己冗长的思维有条理的整理出来,请教老师、同学的一些问题也往往很"低级"--自己脑子稍稍转个弯就行了!由于不分主次地学习,不注重培养解题感觉,他的成绩始终上不去,这就是把书"越读越厚"的后果。数学的解题往往灵活多变,每个人解数学题都有自己的解题思路,提高学习效率。

许多数学题都是耐人寻味的。立体几何使我们了解空间的艺术、数学归纳法让我们领略证明的技巧……中国足球队主教练米卢诺维奇崇尚"快乐足球",那么,我们不妨享受数学,体会数学所带来的乐趣。多思考,多享受,多收获,这就是我说的第三点。平时学习中,必须留相当一部分题目给自己充分思考,尤其是难题,哪怕想它一小时甚至更长的时间。解难题,只要经过充分思考,即使没有做出,整个思维过程也是有价值的。因为难题往往综合较大,e69da5e6ba90e799bee5baa6e79fa5e9819331333236393065能力性较强,对解题者连续发散思维的要求较高,所以解题者往往会有一个长时间的探索过程。在整个探索过程中,解题者不断寻找突破口,不断碰壁,不断调整思维功势,不断进展。与此同时,解题者将自己所学到的不少知识、技巧试用一番,起到了很好的复习效果。解题者也通过做题,检验了自己掌握有关知识的程度,便于为此后的学习定下适当的目标。记得在《中学数学》杂志中有一个不等式证明题,颇有难度。我苦思冥想四个小时,终于得出了一个优于参考解答的解法。这令我欣喜若狂,当然也令我对此类不等式问题有了更深的理解。这里顺便提一下,多思考是培养一个人数学综合能力的好方法,但有些同学往往忽视计算能力,疏于实践。尽管考试可以利用计算器,(竞赛中不能使用,)但计算器并不能完成代数式、解析式、三角式等运算。有的时候同学们解题思路正确,只是计算有误,导致最终出错,这是很可惜的。我不擅长解析几何,其中一个原因就是解析几何的计算量大,如果用的方法不好,计算会更繁琐,更容易出现错误。愿读者和我共同努力,使自己具备过硬的计算能力。

除了以上三点,我想,无论是在学习过程中还是在复习迎考阶段,都要注意心态调整。一次考砸了,原因是多方面的,可能是知识未掌握牢固,可能是解题感觉不到位,可能是前面所说的计算错误,可能是状态不佳,可能是特殊原因,也可能是太想考好以致心态失衡。我觉得一个人的心态不应过度地为考分所影响,要时刻记住,充足的积累是发挥稳定的保证。平时刻苦钻研,考前复习中,抽出时间做一定量的中等难度习题,来提高解题熟练程度,并增强信心。考试时保持平静的心情和兴奋的状态,这样就可能爆发出无穷的能量。当然,在任何时刻,还要记住一句话;"只满足于进步,不满足于成功。"

有的同学知识掌握得不错,苦于发散思维能力不强,对此,可针对性地购买一些有关发散思维的同步辅导书籍。(注:本人对书市不甚了解。)我觉得同学们不妨逆向思维,改编甚至自编一些题目,并自己解答。一来可以复习已做过的题目,使自己在解决类似问题时更能熟练应对;二来可以探索性地研究,细微的条件变化能否或如何影响解题过程:此外,还可以初步领略命题思想,以此拓广思路,深化解题思想。

编题目让你更容易举一反三。尽管编一道新题往往比解一道习题困难数倍,但通过编题过程中的发散思维所得到的收获,也往往比做十道题都大。适当抽出少量时间编解题目,也是一个不错的探索学习的方法。

以上是我的学习心得,仅供参考。有一点需要说明,各人因其不同情况,在无形之中已逐步形成一个适合自己的学习方法,只需适当调整无须刻意改变。其实学数学和学其它学科是可以相互借鉴的。一句话:只要肯动脑筋,事情能做好。
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。

一、 高中数学与初中数学特点的变化

1、数学语言在抽象程度上突变

初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

2、思维方法向理性层次跃迁

高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

3、知识内容的整体数量剧增

高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4、知识的独立性大

初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

二、如何学好高中数学

1、养成良好的学习数学习惯。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法

学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

3、逐步形成 “以我为主”的学习模式

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

4、针对自己的学习情况,采取一些具体的措施

² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中

拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再

犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化

或半自动化的熟练程度。

² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,

使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课

外题,加大自学力度,拓展自己的知识面。

² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩

固,消灭前学后忘。

² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解

题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学

思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,这是学好数学的重要问题

观点五、大学数学太难学了 怎么办啊

针对观点五的第1条评论:

高数是大学中最不好学的课程之一.没有更好的办法,只能上课认真听和记,记住并弄懂重要定理的常用公式,课后多做证明和应用题,尤其是典型例题及常用公式的应用范例.多找老师答疑知.努力会学好的.

学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.
在学习过道程中,一定要:多听(听课),多记(记重要的范文,记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多复习,多总结.用记课堂笔记的方法集中回上课注意力.同时注意平时的知识积累.
通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便答于以后更好的学习.
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!
成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功.

针对观点五的第2条评论:

怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。

一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提e799bee5baa6e997aee7ad94e59b9ee7ad9431333332643234高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。

三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。

四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。

很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;
这就是我的经验之谈,妈妈教给我的道理,使我顺利地度过了中学阶段,也使我的成绩从高一班上的30多名到高三时就进入了年级的前10名,并且没有感到丝毫的压力,学得很轻松自如,你不妨也试一试,但愿我的经验能使你的压力有所减轻、成绩有所提高,那我也就感到欣慰了;
最祝你学习进步!

观点六、大学数学很差怎么办?直接跟不上,基础不好

针对观点六的第1条评论:

如果你真的想学好数学的话,那就需要更多的时间来学习数学,你不知道只是暂时的,如果标题看多了,探索不止的法律就行了。有在思考一个变化,不要想得那么难的数学,把它当做玩游戏,所以很多人会很容易学习

针对观点六的第2条评论:

如果不想靠作弊通过,就zhidao从基础的数学题开始解起,哪差抓哪儿补哪,最实用的的方法就是多练习,或者找前几次考过的试卷看题型找题解答,数学只有多练习才内会有进步,加油吧,我数学也很差,也是这样子通过的,很管用,试试吧,做题时找个安静的环境,容心平气和的做吧。

针对观点六的第3条评论:

我比你强一点,你是专科本科阿

观点七、上大学想学金融系的话必须要数学很好吗?我数学太差怎么办?

针对观点七的第1条评论:

首先,《高等数抄学》《线性代数》《概率论与数理统计》这三门有关数学的课目一般各个专业都要学,学习袭金融有的学校要求学习《运筹学》,相对较难,但是金融一般不研究其中复杂计算原理,证明原理,只要你懂得运用方百法就可以,通过大量练习就可以逐渐熟悉掌握。有关金融专业的计算,都不是很复度杂,理解其中的内涵以及过程,就剩下算数了,除非你想深入研究什么金融公式,金融模型,这就需要知很强的数学功底,但是本科阶段的学习重点不在研究,更多的是学习别人已经研究出来的结论。道以上都是我的个人见解,要想选择金融专业还希望你从各个方面考虑再决定,希望能帮到你。

针对观点七的第2条评论:

学金融的话跟经济挂钩,你要对数字数据有敏感,想学这个的话,到大学修数学统计学咯,数学课程没有的话就自学

针对观点七的第3条评论:

复习

针对观点七的第4条评论:

相办法

针对观点七的第5条评论:

不是的

观点八、现在上学学的好难,学数学,后悔上大学了怎么办

针对观点八的第1条评论:

学的数学?我大学时候是信息抄与计算科学专业,主修的也是数学,5种数学课。等你出来工作后,你也许不会袭有什么感觉,因为你读百过大学投简历有人会面试你。但你如果没有上大学出来面试,你就会发现哪家公司一开始不看文凭??度?
不要问我为什么有知体会,因为我上的大学不怎么好,二本。 2年前刚出来道工作那会很多上市的大公司看不起,面试机会都不给。

针对观点八的第2条评论:

首先不要对数学有心理阴影 其实数学是一种工具 一种思考方式 会使人对问题有周密的思考 其次进了大学就好好学 在一种矛盾的阴影下只会使人荒度时光 退一步讲毎门学科就看作是对人智慧的考验吧

针对观点八的第3条评论:

加油啊!要有信心,不要被困难吓住了,客服了就什么也没有了。少壮不努力,老大徒悲伤。

针对观点八的第4条评论:

慢慢来 都会过去的 或者你有时间就看看别的你感兴趣的科目 法学 英语 会计之类

针对观点八的第5条评论:

去我山东蓝翔技校

针对观点八的第6条评论:

去搬砖吧,不用伤脑筋

观点九、我大学想学心理学,但是听说对数学的要求很高,但是我数学水平比较差,该怎么办?

针对观点九的第1条评论:

兴趣是最好的动力,如果有足够的兴趣的话,数学就不是问题,都可以克服的,不管学生么都会遇到困难,而兴趣就是你最好的筹码。

我现zd在大三,我要告诉你,能有自己真正喜欢的东西真的很幸运,喜欢就坚持吧!我上高中内时也喜欢心理学,甚至到了大学还想跨专业考研,但是因为种种,我没有坚持,挺后悔的,就是想告诉你,有喜容欢的东西就坚持吧!大学的数学和高中还不太一样,你学心理学需要的不是所有数学的知识,可能就是你高中学的很小的一部分,然后扩展往深层次学习。

针对观点九的第2条评论:

心里学对数学要求很高吗,我计算机说的对数学要求高,我也没发现有好高

针对观点九的第3条评论:

对数学要求不高,主要是统计学。

针对观点九的第4条评论:

加油吧!

观点十、学好大学数学最重要的是学好哪几门课程

针对观点十的第1条评论:

大学数学分上、下册。上册包含一元微积分、线性代数初步、究竟解析几何、多元函数微分学和重积抄分;下册包含线面积分、级数与广义积分学、线性代数和微分方程。
适合文科及设计艺术类学生使用.内容包括了高等数学、线性代数及概率统计等大学生所袭需要掌握的基础知识.在本书的编排过程中,特别注重了学生形象思维的培养,对某些较难理解的概念、原理,尽量用图形、图表的形百式给出.同时,本书也兼顾了文科类、设计艺术类学生度中学知识与大学知识的衔接.本书语言流畅、通俗易懂,内容生动、方法简洁,便于应用.

针对观点十的第2条评论:

数学分析,高等代数,概率论

针对观点十的第3条评论:

高数,概率论,线性代数三个

结语:亲爱的准留学生们,以上便是环俄小编为您整理的《大学数学(数学专业)怎么这么难?怎么能学好?》一文,感谢您的阅读。若您仍然没有找到所需要的信息,请随时联系我们的在线顾问获取最专业、最准确的一对一答疑咨询,不仅可以为您节省宝贵的时间,也能有效避免因遗漏信息而与心仪的高校失之交臂,环俄留学祝您留学事宜一切顺利!

联系专业留学顾问,立即获取院校内部非公开资料及留学方案,避免踩雷导致延误留学。


汤歆

环俄留学首席顾问、高级培训讲师、顾问部总监


圣彼得堡国立大学教育学学士、社会心理学硕士,2011年圣彼得堡国立大学优秀毕业生,2017年入围出国留学中介行业领军人物。

免费制定留学方案

今日剩余名额: 9

环俄留学顾问微信二维码

微信扫一扫添加好友,既可免费获得一次由环俄留学首席顾问1v1制定留学方案的机会。